Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
2.
J Med Virol ; 95(1): e28383, 2023 01.
Article Dans Anglais | MEDLINE | ID: covidwho-2148398

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Sujets)
COVID-19 , Protéine de liaison à l'élément de réponse à l'AMP cyclique , Interactions hôte-pathogène , Humains , COVID-19/métabolisme , AMP cyclique/métabolisme , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Cyclic AMP-Dependent Protein Kinases/métabolisme , SARS-CoV-2/métabolisme , SARS-CoV-2/pathogénicité , Protéine CBP/métabolisme , Interactions hôte-pathogène/génétique , Interactions hôte-pathogène/physiologie
3.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article Dans Anglais | MEDLINE | ID: covidwho-1500462

Résumé

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Sujets)
Anticorps neutralisants/immunologie , Anticorps antiviraux/immunologie , COVID-19/prévention et contrôle , SARS-CoV-2/immunologie , Animaux , Anticorps monoclonaux/administration et posologie , Anticorps monoclonaux/composition chimique , Anticorps monoclonaux/immunologie , Anticorps neutralisants/administration et posologie , Anticorps neutralisants/composition chimique , Anticorps antiviraux/administration et posologie , Anticorps antiviraux/composition chimique , Sites de fixation , COVID-19/anatomopathologie , COVID-19/virologie , Épitopes , Humains , Souris , Souris transgéniques , Mutation , SARS-CoV-2/génétique , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/immunologie , Charge virale/effets des médicaments et des substances chimiques , Perte de poids/effets des médicaments et des substances chimiques
4.
Nature ; 582(7811): 289-293, 2020 06.
Article Dans Anglais | MEDLINE | ID: covidwho-608904

Résumé

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Sujets)
Betacoronavirus/composition chimique , Cysteine endopeptidases/composition chimique , Découverte de médicament/méthodes , Modèles moléculaires , Inhibiteurs de protéases/composition chimique , Protéines virales non structurales/antagonistes et inhibiteurs , Protéines virales non structurales/composition chimique , Antiviraux/composition chimique , Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , COVID-19 , Cellules cultivées/virologie , Protéases 3C des coronavirus , Infections à coronavirus/enzymologie , Infections à coronavirus/virologie , Conception de médicament , Évaluation préclinique de médicament , Humains , Pandémies , Pneumopathie virale/enzymologie , Pneumopathie virale/virologie , Inhibiteurs de protéases/pharmacologie , Structure tertiaire des protéines , SARS-CoV-2
5.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Article Dans Anglais | MEDLINE | ID: covidwho-342735

Résumé

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Sujets)
Betacoronavirus/composition chimique , Betacoronavirus/enzymologie , RNA replicase/composition chimique , Protéines virales non structurales/composition chimique , AMP/analogues et dérivés , AMP/composition chimique , AMP/métabolisme , AMP/pharmacologie , Alanine/analogues et dérivés , Alanine/composition chimique , Alanine/métabolisme , Alanine/pharmacologie , Antiviraux/composition chimique , Antiviraux/métabolisme , Antiviraux/pharmacologie , Domaine catalytique , ARN polymérase ARN-dépendante de coronavirus , Cryomicroscopie électronique , Modèles chimiques , Modèles moléculaires , ARN viral/métabolisme , SARS-CoV-2 , Transcription génétique , Réplication virale
6.
Science ; 368(6497): 1331-1335, 2020 06 19.
Article Dans Anglais | MEDLINE | ID: covidwho-108792

Résumé

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent responsible for the global COVID-19 (coronavirus disease 2019) outbreak. The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a pivotal role in mediating viral replication and transcription. We designed and synthesized two lead compounds (11a and 11b) targeting Mpro Both exhibited excellent inhibitory activity and potent anti-SARS-CoV-2 infection activity. The x-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a or 11b, both determined at a resolution of 1.5 angstroms, showed that the aldehyde groups of 11a and 11b are covalently bound to cysteine 145 of Mpro Both compounds showed good pharmacokinetic properties in vivo, and 11a also exhibited low toxicity, which suggests that these compounds are promising drug candidates.


Sujets)
Antiviraux/composition chimique , Betacoronavirus/enzymologie , Conception de médicament , Protéines virales non structurales/antagonistes et inhibiteurs , Animaux , Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , COVID-19 , Domaine catalytique , Chlorocebus aethiops , Protéases 3C des coronavirus , Infections à coronavirus/traitement médicamenteux , Cysteine endopeptidases , Chiens , Évaluation préclinique de médicament , Femelle , Humains , Mâle , Souris , Structure moléculaire , Pandémies , Pneumopathie virale/traitement médicamenteux , Structure tertiaire des protéines , Rat Sprague-Dawley , SARS-CoV-2 , Tests de toxicité , Cellules Vero
7.
Science ; 368(6492): 779-782, 2020 05 15.
Article Dans Anglais | MEDLINE | ID: covidwho-47347

Résumé

A novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] outbreak has caused a global coronavirus disease 2019 (COVID-19) pandemic, resulting in tens of thousands of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase [(RdRp), also named nsp12] is the central component of coronaviral replication and transcription machinery, and it appears to be a primary target for the antiviral drug remdesivir. We report the cryo-electron microscopy structure of COVID-19 virus full-length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-angstrom resolution. In addition to the conserved architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified ß-hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this polymerase. The structure provides a basis for the design of new antiviral therapeutics that target viral RdRp.


Sujets)
Betacoronavirus/enzymologie , RNA replicase/composition chimique , RNA replicase/ultrastructure , Protéines virales non structurales/composition chimique , Protéines virales non structurales/ultrastructure , AMP/analogues et dérivés , AMP/métabolisme , AMP/pharmacologie , Alanine/analogues et dérivés , Alanine/métabolisme , Alanine/pharmacologie , Antiviraux/métabolisme , Antiviraux/pharmacologie , Domaine catalytique , ARN polymérase ARN-dépendante de coronavirus , Cryomicroscopie électronique , Conception de médicament , Modèles moléculaires , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/ultrastructure , Structure en brin bêta , Domaines protéiques , RNA replicase/antagonistes et inhibiteurs , RNA replicase/métabolisme , SARS-CoV-2 , Protéines virales non structurales/antagonistes et inhibiteurs , Protéines virales non structurales/métabolisme
SÉLECTION CITATIONS
Détails de la recherche